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SUMMARY

ADAO387Y8O

There are several bi-directional situations where it is
required to obtain a measure of correlation. The question has
been raised often that the bi-directional ccrrelation coefficients
so far known are not scale invariant even asymptotically.
Following Cox's procedure (Cox, 1975), we introduce a new
correlation coefficient which has the desirable property of
being invariant under scale for large samples with von Mises
marginals, We obtain its asymptotic distribution under the
hypothesis of independence. We examine its properties, and

give a numerical example.
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l. Cox's Procedure

Cox (1975) derived tests for "von Miseness" for
circular observations using the exponential distribution

with probability density function proportional to
exp(cL1 cos X +sl sinx+c.2 cos 2x +32 sin 2x) .

1f xl,...,xn is a random sample, then the agreement with
the von Mises density a, =82 =0 1is thus tested from the
conditional distribution of (3 cos 2){j s B 8in ZXj) given

"cosX., ZsinX.) .
(v j 3

Let (Xl.Yl),....(xn,Yn) be n independent observations
on a torus. Mardia (1975) introduced the correlation coefficient

of (xi,Yi) TRER. B O e |

2 2
max (D ,D_)/{(1 -R,) (1L -R)} , (1.1)

where

2 i R 2
o * *) - s * *
n"D, {i_lcos (xi % Yi) anRz} + {iilsn.n (xi 3 Yi) e

* X -x * = -
xi = ( i xo) mad 2n and Yi (Yi YO) mod 2n , and

where §1 and 5‘2 are the mean resultant lengths and
)-('0, io are the mean directions of K:,L and Yi respectively.
(Downg andEifler (1975) show the equivalence of this correlation

with a correlation coefficient introduced by Downs (1974) in
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a different set up). Downs and Eifler (1975) point out that
the distribution of (1.1) will in general depend on the
concentratiop parameter of the marginals. (For a summary of
various circular correlation coefficients, see Puri and Rao
(1976)) .

It is shown that Cox's procedure (Cox, 1975) provides a new
correlation coefficient which is Scale invariant for large
samples with von Mises marginals.

Consider the probability density function introduced by

Mardia (1975) as

c exp{;f“l cos (x-y) +n, cos(y-v) tacosxcosy+ b sinxcosy

2

+ c cosxsiny + dsinxsiny} , Ogx, ys2nm .

Fcllowing Cox's procedure, to test the hypothesis of
independence (i.e. a=b=c=d=0) with von Mises marginals,

we should consider the distribution of

nU'= (FcosX, cosY,, T cosX, sinY,, y sinX, cosY., ¥ sinX, sinY,
-~ 1 1 1 X 1 1 1 1

given

nT'= (5 cosxi, }'tsinxi. ScosY ZsinYi)

il

To obtain a correlation coefficient, a suitable function

of ﬁ\'f is considered in section 2. Its asymptotic




distribution under the null hypothesis is considered in
section 3. The properties of the resulting coefficient is
examined in section 4 together with its spherical extension.

In section 5, a numerical example is given.

2. An Invariant Function

Consider the hypothesis H of independence: a=b=c=d

Under H , let

b2 %
Cov(T,T) = %g - % (Tll }__12) »
=21 22

Set

Z1.2 = 21y T 215705 By

and denote

2T - ET)] 4 [U EU-3

g(Xx,¥) =(U-ET -7 He 21225,

H~ ~12 22 ~1le2%

where EH denotes the expectation under H , and

~

x’ = (xl,...,xn) and X'= (Yl'...'Yn) .

Let now %, %H(g) and ﬁn(i) denote the maximum
likelihood estimators of Z,.EH(E) and EH(E) respectively.
It may be noted that these estimators are the functions of

the maximum likelihood estimators of yu, v, “,, and x, where

~
L

o 1 1 2 2

in the notation of Mardia (1972, Chapter 5). Then the

(T -E T)],

w=%. v=¥, x =a""(R), and n, =2 (&) (2.2)

(2.1)




resulting value of g(X,Y) is

2 A ~ = ~ A_l = ~ 2 Il\_l BAsC ARty -~ A_l i L =
= - U) - - - -
Txy = [T-Bg(l) ~T1g T B -BgT)Y By (B -EU-F,,F,, (T -E4T)]
~(2.3)

The rationale for (2.1) is obvious considering the conditional
distribution of ﬁ\i when g and i are jointly normal. Note
that (2.2) and (2.3) are invariant under separate linear
non-singular transformations on E and i -
We now show that this procedure when applied to the

bivariate case with

ng =% xv, , o= (x,, 72X, vy,, 5v9)

B0 0 -~ i i i i
leads to r2 where r 1is the ordinary correlation coefficient.

We assume that under H, X and Y are independent

N(u,oi) and N(u,og) respectively. Then it can be easily
23 -1 _
shown that 7102 50195 ¢ T15755 = (Vopu,0,0) and (2.1)

reduces to

% & " 2,22
{(U=pv =v(X=-y) ~u(y=-v)} /oiczf (2.6)
n n
where X =7 X./n and Y=1% Y./n . Using the maximum
i=1 i=1

2
1 and o, under H ,

(2.4) reduces to r2 . Hence Cox's procedure does lead to a

likelihood estimators for , v, o

suitable correlation for the linear case.




3. The Correlation Coefficient

Without any loss of generality, let
X =Y¥_=0 (3.1)

Consequently, o =v =0 .

It can be shown that

iz 1 di ~ ) 1-+A*) 4“2**2 ~ : »*)
/lumm/ 11 4 139{(1+a2 ( a,) -4n"a , (l+a2)( -a,) .
(l-a2)(1.-a2). (1 -az)(l-+a2)} v 13.2)
222 = diag(al, a,, ai, a;) , and
A* ~
0- all o' aai, 0
iy *
%, = ¥a Oy = w3 (3.3)
o 0, 0, 0, 0
0' G*azl 00
'where

~ I\2 ~

= - =] -
2a;, = l+a,-2a, 2a, a, (3.4)
Zal = 1+a2-2a ” 2a2- -a, (3.5)
a = EcosX, a* = EcosY (3.6)
a, = E cos 2X, a,5 = Ecos 2Y. (3.7)

On simplifying, we obtain
s = * * * *

21.2 diag(alal, a,aj, ajajz, azal) (3.8)




/uva“ﬁl

2
Note that
A A-z{l-ﬁz-(a/i) 3.9
a =Ry, a, = 1 11 1 (3.9)
& = Kok waL= R - A
@ =Ry, a, = {1~ 5 ~ ( 2/n2)} (3.10)
3 = ~
E(E ) (QQ ¢« 0, O, 0) {3.11)
and
~ e ~ A.‘.
E(T') = (@, O, a , O) . (3.12)
Substituting these results in (2.3), we obtain
3 2 -2 L2 - &
5 (Ul - RlRZ) v, U3 U4
*yw ™ a.ax* taax 4 a_ax* a*a } ’ i3:13)
1 1 2 2 12
where xo = Yo =0 .
Note that
a, = var (cos X) , a, = var (sin X)
\a'i = var(cos Y) , a"z* = var(sinY) .

Since (}-_J’,:I‘-_") is jointly normal for large n , ng(X,Y)

2
4

are asymptotically equivalent, it follows that under H ,

is asymptotically ¥ under H . Now since (2.1) and (2.2)

2

2 A :
nr v 1is asymptotically Xq *




4. Properties of the Correlation Coefficient.

(a) It can easily be seen that the population counterpart

of (3.14) is

Bary =oi +o§ +o§ +oi (4.1)
where g

, = corr{cos(X -ug), cos(Y-—vO] .

By = corr{cos(x-uo), sin(Y-—vO)} ¢

g, corr{sin(x-—uo), cos(Y‘-vO)] ‘

Py ™ corr{sin(x-uo), sin(Y'-vo)] .

and Mg and Vo are the mean directions of X and Y

respectively (Note that corr(X,Y) denotes the ordinary
correlation coefficient).
We have 0 <p < 4 .
If X and Y are independent, we have Diy = 0 . When
2 2 2 2

2 :
Ol = 02 = 03 = 04 =1 , we have ny =4 ., In this case,

X = Y=0, with probability 1 . For the perfect rotational
dependence of the form .Y = (2X+{§)mod 2n , it is found that
2

= 2 s
°xy

(b) The exact distribution of ﬁ‘i under (l1.1) does not
involve nuisance parameter (ul,nl) and (“2'"2) because

f is sufficient for (ui,ni) » i=1,2 . Also the exact




distribution of riy does not involve (Ui'Ki) o

by the same argument as in Cox (1975).

(c) Let x and Y take values on a p-dimensional torus,
where 5'5 =Y’Y =1 . Then (4.11) immediately extends to
P

5 {Corr(xz,Y;)}z 3
1 =1

02 =
XY

W ™M

i
where X* = AX, Y*= BY , and, A and B are orthogonal

matrices such that E(X*) = E(X*) = el , wWhere ei = (10,0, . ..50)
Its sample counterpart can be written, and the above discussion

for p=2 can be generalized.

5. Numerical Example

Downs (1974) consideredthe following data related to
the estimated peak times (converted into angles) for two

successive measurements of diastolic blood pressures.

&= 30°, 15, 1F ., &, 348°, 4P, 3M1*, 333°, 332°, 28"

7]

o= 259, 5%, 349°, 350°, 380", 347T°, 345°, 331°, 329°, 28 .,

Then

r. =0,974, r2 =0.213, r; =0.152, ri =0.933 ’

Hence LR P

Sy ‘V/ "o

which is large. Hence there is a strong evidence for

dependence as it is expected on practical ground. Note that

nr? = 22.7 , and the 1% value of xi is 13.3.
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